
1.  Introduction
Isoprene is the dominant nonmethane volatile organic compound (VOC) emitted to the atmosphere (Guenther 
et al., 2012). Produced mainly in the leaves of woody plants, isoprene is highly reactive and drives ozone and 
aerosol production (Lin et al., 2013; Paulot et al., 2012), modulates atmospheric oxidation (Bates & Jacob, 2019), 
and affects the global nitrogen cycle (Mao et al., 2013; Paulot et al., 2013). Accurate flux estimates are critical for 
assessing and predicting these impacts; however, bottom-up isoprene inventories are highly uncertain as they (a) 
rely on emission factors extrapolated from limited point measurements and (b) are sensitive to model assumptions 
for land cover, meteorology, and plant canopy structure (Arneth et al., 2011; Ganzeveld et al., 2002; Messina 
et al., 2016). Particular uncertainties have been identified in the world's isoprene hotspots such as Amazonia, 
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where studies show that isoprene exhibits much stronger seasonal and spatial variability than can be explained 
by current models (Alves et al., 2018; Barkley et al., 2009; Batista et al., 2019; Gu et al., 2017; Wei et al., 2018). 
Isoprene's impact on atmospheric oxidation has been a further subject of debate, and specifically the degree 
to which it acts to sustain or deplete hydroxyl radical (OH) concentrations under low-NOx conditions (Feiner 
et al., 2016; Fuchs et al., 2013; Lelieveld et al., 2008).

Satellite-based measurements of isoprene are beginning to provide powerful new information for addressing 
these gaps (Fu et al., 2019). Our team recently developed the first global isoprene measurements from space by 
applying an efficient machine-learning algorithm to thermal infrared radiances from the Cross-track Infrared 
Sounder (CrIS; Wells et al., 2020). That approach derived isoprene column abundances from the CrIS-measured 
on-peak/off-peak brightness temperature difference (ΔTb) at the ν28 absorption feature, and showed that combin-
ing these data with concurrent formaldehyde observations affords joint constraints on isoprene emissions and 
chemistry over source regions. A major finding of that work was that the isoprene:formaldehyde relationship 
observed from space supports current understanding of isoprene-OH chemistry, with no indication of missing OH 
recycling at low NOx. The new measurements also pinpointed regions where emission errors for both isoprene 
and NOx cause major prediction biases in current models.

In this paper, we present the Retrieval of Organics from CrIS Radiances (ROCR) next-generation isoprene 
retrieval, which improves on our original machine learning algorithm by employing a hyperspectral range index 
(HRI) to quantify column abundances. The HRI approach has been used previously with the Infrared Atmos-
pheric Sounding Interferometer (IASI) to retrieve global distributions of ammonia (Whitburn et al., 2016), meth-
anol, formic acid, peroxyacetyl nitrate (Franco et al., 2018), acetone (Franco et al., 2019), and acetic acid (Franco 
et al., 2020). By leveraging a broader spectral range than the brightness temperature difference, the HRI increases 
near-surface sensitivity while reducing impacts from interferences; our updated algorithm thus enables isoprene 
detection at unprecedented resolution while maintaining high computational efficiency. We apply the ROCR 
algorithm here to obtain global isoprene distributions on a daily basis from 2012 through 2020. We evaluate the 
results against other observations, including the first ground-based column retrievals of atmospheric isoprene, 
and characterize pertinent sources of measurement uncertainty. Finally, we explore this long-term global data set, 
and highlight the new, high-resolution information provided over two key isoprene hotspots.

2.  Materials and Methods
CrIS is a Fourier transform spectrometer flying in a sun-synchronous orbit onboard Suomi-NPP (SNPP, launched 
10/2011) and JPSS-1/NOAA-20 (launched 11/2017), with a third instrument planned for inclusion on JPSS-2 
(launch expected 09/2022). CrIS has 0.625 cm −1 spectral resolution in the longwave IR (LWIR; 650–1,095 cm −1), 
and an angular field of regard consisting of a 3 × 3 pixel array with a 14 km diameter footprint at nadir and a 
2,200 km cross-track scan width that provides near-global coverage twice daily. This sampling strategy affords 
the opportunity for high-resolution quantification of daily isoprene distributions. The early-afternoon daytime 
overpass (∼1330 LT for SNPP and ∼1240 LT for JPSS-1/NOAA-20) typically corresponds with peak isoprene 
emissions, enhanced vertical mixing, and strong land-atmosphere thermal contrast—all of which increase sensi-
tivity to near-surface absorbers. CrIS also features significantly lower noise (e.g., ∼0.04  K at 900  cm −1 and 
280 K) than other atmospheric sounders (Zavyalov et al., 2013).

2.1.  CrIS HRI Derivation

The ROCR algorithm derives isoprene column abundances based on the HRI (Equation 1), which is a dimension-
less quantity measuring the spectral signature of a target atmospheric species (Walker et al., 2011). The retrieval 
begins with single-footprint Level 1B CrIS spectra (available from 02/2012 onward from SNPP) over land. We 
cloud-screen the spectra based on the difference between the MERRA-2 (Gelaro et al., 2017) surface temperature 
and the CrIS-measured 900 cm −1 brightness temperature (Figure S1 in Supporting Information S1), following 
Wells et al. (2020). The HRI is then computed for each spectrum via (Franco et al., 2018):

HRI =
1

𝑁𝑁

𝐊𝐊𝑻𝑻 𝐒𝐒−1
𝐲𝐲 (𝒚𝒚 − 𝒚̄𝒚)

√

𝐊𝐊𝑻𝑻 𝐒𝐒−1
𝐲𝐲 𝐊𝐊

.� (1)
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Here, y is the measured spectrum, while 𝐴𝐴 𝒚̄𝒚 and Sy are respectively the mean background spectrum and background 
covariance matrix, both calculated from scenes in which isoprene is undetectable. Sy characterizes the expected 
correlations between spectral channels due to factors other than isoprene, such as interfering trace gases (Whit-
burn et al., 2016). K is the spectral Jacobian for a change in the target species, which we calculate at the midpoint 
of 12 equally spaced viewing angle bins (0°–5° to 55°–60°) using radiances generated by the Earth Limb and 
Nadir Operational Retrieval (ELANOR) radiative transfer model (Clough et al., 2006) and simulated isoprene 
output from GEOS-Chem (v11-02e; www.geos-chem.org). The employed spectral range (890–910 cm −1) encom-
passes the two =CH2 wag absorption peaks exhibited by the isoprene molecule (Brauer et al., 2014).

The background quantities 𝐴𝐴 𝒚̄𝒚 and Sy are calculated monthly for each angle bin from CrIS spectra that are selected 
iteratively following the approach used for IASI VOC retrievals (Franco et al., 2018). We start by calculating 
the HRI values for all spectra in a given month and angle bin. After removing spectra with an HRI exceeding a 
specified threshold, we rederive 𝐴𝐴 𝒚̄𝒚 , Sy, and the corresponding HRIs, and iterate until convergence upon a spec-
tral ensemble with below-threshold values. Each iteration step involves normalization (by N) to maintain an 
HRI mean of 0.0 and standard deviation of 1.0 for background conditions. N is calculated as the HRI standard 
deviation over a region where target species detection is not expected; we employ spectra over central Australia 
(20°–30°S, 122°–137°E) for this purpose and test the use of an alternate normalization region in Section 3.2. We 
achieve enhanced sensitivity for isoprene with a background HRI threshold of 1.0, consistent with prior VOC 
findings for IASI (Franco et al., 2018); we explore the retrieval sensitivity to this threshold in Section 3.2. Once 
iteration is complete, we generate daily gridded HRI maps at 0.5° × 0.625° resolution.

By encompassing a broader spectral range over which the target species is optically active, the HRI generated as 
above delivers improved sensitivity over ΔTb-based and other approaches. It also lessens the impacts of interfer-
ents by using measured radiances to account for spectral correlations under background conditions. Figure S2 in 
Supporting Information S1 demonstrates this improvement by comparing the isoprene HRI and ΔTb (at ν28) for 
synthetically generated radiances under varying environmental conditions and a given viewing geometry. The 
HRI exhibits a tighter linear correlation with isoprene (r = 0.78 vs. 0.51 in this example) with significantly less 
scatter for low and moderate column densities (Ωisoprene < 1 × 10 16 molec cm −2). Thermal contrast, water vapor 
and other factors still drive some variability in the HRI-isoprene relationship, and we account for these residual 
effects using a neural network as described next.

2.2.  Machine-Learning Retrieval

Isoprene abundances are derived from the CrIS HRIs using a feed-forward neural network (NN) as employed in 
our previous work (Wells et al., 2020). The NN is trained using a synthetic HRI data set generated from a full year 
of global overland ELANOR radiances simulated at the midpoint of the 12 angle bins described earlier. ELANOR 
inputs include temperature and water vapor profiles from the NASA Goddard Modeling and Assimilation Office 
(GMAO) and isoprene profiles from GEOS-Chem (Wells et  al.,  2020), with the latter subjected to 100% 1σ 
Gaussian noise to ensure that NN predictions reflect the spectroscopic effects of the input variables rather than 
any prior correlations between them. We replicate the ELANOR spectral output 25 times per scene, with CrIS-
like noise applied each time, and compute the resulting simulated HRIs as:

HRIsim =
𝐊𝐊𝑇𝑇𝐒𝐒−1

𝐲𝐲

(

𝒚𝒚 − 𝒚𝒚𝐨𝐨

)

√

𝐊𝐊𝑇𝑇𝐒𝐒−1
𝐲𝐲 𝐊𝐊

� (2)

where y and yo are simulated spectra with and without the target species, and Sy is the CrIS-observed background 
spectral covariance matrix for the same month-of-year. Using spectral pairs with and without the target species 
for the simulated HRI reduces retrieval sensitivity to forward model errors, while preserving a mean of zero in 
the absence of the target gas (Franco et al., 2018). The final HRIsim for each scene is obtained as the mean across 
the 25 replications.

We then train the NN to convert the HRI values to isoprene columns while accounting for the additional factors 
that affect that relationship. For isoprene we find that these comprise thermal contrast, water vapor column, 
viewing angle, and surface pressure. Table S1 in Supporting Information S1 characterizes the relative importance 
of these quantities via sensitivity tests that sequentially withhold each one. Our previous ΔTb-based retrieval 

http://www.geos-chem.org
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also included nitric acid as a predictor (Wells et al., 2020), but we find here that its inclusion does not improve 
predictive power, implying that its effects are already captured in the HRI computation. Other factors found here 
(surface emissivity) or previously (ammonia, CFCs; Wells et al., 2020) to confer no predictive benefit are simi-
larly omitted.

Of the architectures tested (Table S1 in Supporting Information S1), we find optimum performance for a NN with 
two hidden layers (consisting of 10 and 5 nodes, respectively) employing hyperbolic sigmoid transfer functions 
and a single-node output layer employing linear transfer functions. The training proceeds on 10 random extrac-
tions of the data, with 50% of each extraction used for training, 30% for validation, and 20% for testing. The mean 
prediction of the 10 NNs can reproduce 96% of the isoprene column variance in the training set (Figure S3a and 
Table S1 in Supporting Information S1), with random uncertainty generally <25% for higher isoprene columns 
and/or high thermal contrast (higher for lower columns and/or low thermal contrast; Figure S3b in Supporting 
Information S1). Finally, we apply the resulting 10 NNs to the CrIS-measured HRIs with temperature and water 
information obtained from MERRA-2 reanalysis (Gelaro et al., 2017), and derive the final retrieved isoprene 
column as the mean output across the 10 NNs.

We have applied the above ROCR algorithm to obtain global, daily distributions of isoprene at 0.5° × 0.625° 
resolution spanning most of the CrIS SNPP record (2012–2020). As we demonstrate below, the retrieval exhibits 
significantly less noise than our previous version outlined in Wells et al. (2020). We do obtain some wintertime 
artifacts at high latitudes that we attribute to surface effects in the presence of ice and snow. We therefore post-
filter scenes with surface temperatures below 273 K as we do not expect to detect isoprene in such conditions; a 
similar approach is used for IASI VOC retrievals (Franco et al., 2018, 2019).

Next, in Section 3, we present a series of intercomparisons and sensitivity tests to characterize relevant uncertain-
ties in the ROCR isoprene retrievals. Subsequently, in Section 4 we explore the spatial and temporal information 
provided by these new satellite-based isoprene measurements over key global source regions.

3.  Validation and Error Characterization
3.1.  Comparison to OE and Brightness-Temperature Difference Approach

We begin with a spatial evaluation of the next-generation ROCR isoprene retrievals against previously published 
results generated using optimal estimation (OE; Fu et al., 2019) and brightness-temperature difference (Wells 
et al., 2020) methods. Figure 1 compares these three datasets over Amazonia during September 2014. The high 
degree of spatial consistency (Figures 1a–1c) and strong correlation (r = 0.92–0.93; Figures 1d–1e) among them 
provides confidence in the isoprene distribution provided by these separate approaches. Furthermore, we see 
reduced scatter at low-to-moderate isoprene for the HRI-OE comparison (Figure 1e) compared to the ΔTb-OE 
case (Figure S4 in Supporting Information S1)—demonstrating the HRI signal-to-noise improvement over the 
earlier ΔTb approach.

The major-axis intercomparison slope for the ROCR HRI-based isoprene columns is 0.81 versus the ΔTb-based 
columns and 0.63 versus the OE-based columns (Figures 1d and 1e). As discussed by Franco et al. (2018), each 
of these retrieval approaches is subject to its own uncertainties, some of which may be systematic. In the OE 
case, these include forward model assumptions, fitting errors for interfering species, and the dependence on a 
priori target species information. In particular, the OE columns in Figure 1 (Fu et al., 2019) employ isoprene 
columns from GEOS-Chem as prior, which have been shown to have a major high bias over Amazonia (Wells 
et al., 2020); this may partly explain the difference seen in Figure 1e. Uncertainties for the HRI-based approach 
include assumptions in the forward model set-up and in the HRI derivation. We examine the impact of these in 
Section 3.2, and present a comparison of the ROCR HRI-based isoprene retrievals to independent ground-based 
column observations in Section 3.3.

3.2.  Uncertainty Analysis

We assess the uncertainties of the HRI-based results through a series of sensitivity analyses targeting specific 
aspects of the retrieval. We focus in particular on the HRI background computation, cloud screening, normaliza-
tion approach, vertical mixing, and potential interferences from monoterpenes.
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3.2.1.  Background Definition

The background spectrum and covariance matrix (𝐴𝐴 𝒚̄𝒚 , Sy) were derived in Section 2.1 using an HRI < 1 threshold 
following Franco et al. (2018). We tested the impact of this selection by reanalyzing a full year of CrIS spectra 
with an alternate background definition (HRI < 2). The resulting Sy matrix was used to rederive the simulated 
HRI values, with the NN then retrained and applied to the updated CrIS HRI fields.

Figures 2a and 2b compare the resulting monthly mean isoprene columns to those obtained with our standard 
approach. The comparison slope across the entire data set is 0.774 ± 0.002 (bootstrapped 95% confidence inter-
val); however, differences occur primarily for points with Ωisoprene < 1 × 10 16 molec cm −2. Use of a higher thresh-
old leads to retention of more low-to-moderate isoprene scenes in the background calculation, yielding a negative 
bias at low column amounts. This impact is strongly reduced when isoprene is elevated, with mean differences 
decreasing from 20% at 1 × 10 16 molec cm −2 to near-zero at higher column amounts.

3.2.2.  Cloud-Screening

Clouds are an important consideration in thermal-IR retrievals, generally acting to reduce signal by obscuring the 
below-cloud portion of the trace gas column (Whitburn et al., 2016). For that reason we cloud-screen the CrIS 
spectra as described in Section 2.1; if such screening were inadequate we would expect a low retrieval bias due to 
retained cloudy scenes. To characterize the uncertainties associated with cloud-screening, we performed a sensi-
tivity test using a more conservative cloud threshold (based on the clear-sky difference between the 900 cm −1 
brightness temperature and surface skin temperature, as shown in Figure S1 in Supporting Information S1). As 
above, we then reanalyzed a year of CrIS spectra, regenerated the training set using the updated Sy, retrained the 
NN, and applied it to the observed HRI fields. Results plotted in Figures 2c and 2d show that for all but the lowest 

Figure 1.  Isoprene retrieval comparison over Amazonia during September 2014. Maps display monthly mean columns averaged on a 2° × 2.5° grid and normalized to 
their domain means for (a) the Retrieval of Organics from Cross-track Infrared Sounder Radiances (ROCR) hyperspectral range index-based retrieval, (b) the ΔTb-based 
retrieval presented in Wells et al. (2020), and (c) the optimal estimation (OE)-based retrieval presented in Fu et al. (2019). Scatter plots compare the corresponding 
absolute column densities. Error bars in the scatter plots show the standard deviation across the 10 neural networks; the red line and gray shaded area indicate the 
reduced major axis regression and bootstrapped 95% confidence interval, respectively. The dashed line shows the 1:1 relationship.
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Figure 2.  Retrieval of Organics from Cross-track Infrared Sounder Radiances isoprene sensitivity to different aspects of the 
retrieval: (a) Comparison of monthly mean isoprene columns derived with a background definition of hyperspectral range 
index (HRI) < 2 against the baseline approach using HRI < 1. (c) Comparison of monthly mean isoprene columns derived 
with a more stringent cloud-screening threshold against the baseline approach (see text). (e) Comparison of monthly mean 
isoprene columns derived when including ocean scenes against the baseline land-only approach. (g) Comparison of monthly 
mean isoprene columns derived when using an alternative planetary boundary layer (PBL) mixing scheme during neural 
network training. The red and dashed lines show the reduced major axis regression and 1:1 relationship, respectively. (b), (d), 
(f), and (h) Percent difference (100% × [Ωtest−Ωbase]/Ωbase) for each test as a function of the baseline column amount, with 
black dots and error bars denoting the mean and standard deviation for each bin. Coloring in each panel indicates the data 
density.
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isoprene columns the impact of this alternate cloud treatment is minimal, with mean differences of <5% relative 
to the base-case. We conclude that clouds are not a predominant source of uncertainty in these retrievals.

3.2.3.  Inclusion of Ocean Scenes and HRI Normalization

Given isoprene's terrestrial sources and short atmospheric lifetime, we restrict the base-case retrieval to land 
scenes for computational efficiency. The HRI normalization step, which requires scenes lacking the target species, 
then employs spectra over central Australia as outlined in Section 2.1. We tested the impact of this treatment by 
reanalyzing a year of CrIS spectra for both ocean and land scenes, with HRI normalization based on spectra 
over the remote Pacific (10°–30°S, 180°–130°W) rather than Australia. Results are shown in Figures 2e and 2f. 
Isoprene columns derived when including versus excluding ocean scenes generally agree to within 5%–10% on 
average for retrievals above 0.5 × 10 16 molec cm −2, showing that this data selection criterion does not impart 
significant uncertainty to the results.

3.2.4.  Vertical Mixing

Satellite-based measurement sensitivity in the thermal IR depends on the vertical distribution of the absorber and 
hence on atmospheric mixing. To test the sensitivity of the retrievals to model vertical mixing assumptions, we 
generated a new HRI training set from ELANOR simulations driven by GEOS-Chem isoprene profiles produced 
using an alternate planetary boundary layer (PBL) mixing scheme (Wu et  al.,  2007). Here, all surface emis-
sions are mixed instantaneously through the vertical extent of the boundary layer, resulting in higher lofting of 
isoprene than in the standard case, which employs the GEOS-Chem default non-local PBL mixing scheme (Lin & 
McElroy, 2010). Figure S5 in Supporting Information S1 compares results for these two mixing treatments over 
Amazonia. We then trained a NN with this modified output and applied it to a year of CrIS-measured HRI values.

Figures 2g and 2h show that the resulting columns have mean differences of up to 20% between these two cases, 
with higher columns generally obtained with the full-mixing scheme. By itself we would expect the enhanced 
isoprene lofting to yield a higher HRI for a given isoprene abundance—therefore leading to lower column predic-
tions from the CrIS HRI fields. This is indeed what occurs under dry conditions (Figure S6 in Supporting Infor-
mation S1). However, isoprene is predominantly emitted in humid tropical climates, and under wet conditions 
enhanced water-driven IR absorption below the lofted isoprene yields the opposite effect (the water distribution 
is prescribed by the assimilated meteorological fields driving the simulation, and is not altered by the change in 
mixing scheme). Overall, however, we can consider the <20% mean differences arising from this sensitivity test 
(as shown in Figure 2d) to reflect the envelope of uncertainty associated with vertical mixing as currently repre-
sented in chemical transport models.

3.2.5.  Potential Interference From Monoterpenes

In our previous work (Fu et al., 2019; Wells et al., 2020) we assessed the potential for other molecules with terminal 
=CH2 groups to interfere with the isoprene signal, and concluded that monoterpenes are likely the most important 
such species to consider. To estimate the extent of their potential impact, we compute and compare optical depths 
for isoprene and total monoterpenes at the peak of the ν28 isoprene feature. For purposes of this assessment, opti-
cal depths are approximated as the product of the GEOS-Chem column densities and the corresponding absorp-
tion cross sections (Gordon et al., 2017) at ν28 and 298 K. Monoterpenes are simulated in GEOS-Chem as MTPA 
(α-pinene + β-pinene + sabinene + carene), MTPO (terpinene +  terpinolene + myrcene + ocimene + other 
monoterpenes), and limonene. For MTPA we employ the β-pinene cross-section (which is the largest reported 
among constituent species) whereas for MTPO we employ the myrcene cross-section (the only one reported 
among constituent species).

While these biogenic species share a number of emission hotspots, Figure 3 shows that the total estimated mono-
terpene optical depth is typically <5% that of isoprene for major isoprene source regions. The monoterpene signal 
only becomes relevant for isoprene columns <5 × 10 14 molec cm −2, well below the CrIS limit of detection (Wells 
et al., 2020). Furthermore, this influence is likely to be an upper limit, for two reasons. The first is our assump-
tion that all MTPA species absorb as efficiently as β-pinene. The second is that all the published monoterpene 
cross sections in 890–910 cm −1 (Gordon et al., 2017) are spectrally distinct from that of isoprene, diminishing 
any potential impact on the HRI. We therefore consider monoterpene interferences to be minimal for the isoprene 
retrievals shown here.
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3.3.  Comparison to Ground-Based Isoprene Retrievals

We showed in the last section that different retrieval assumptions, particularly the HRI background definition 
and vertical mixing treatment in the forward model, can each lead to systematic uncertainties on the order of 
10%–20% for isoprene columns >1 × 10 16 molec cm −2 (and higher at lower column amounts). For that reason, 
independent evaluation is key. Here, we compare the ROCR isoprene retrieval from CrIS against ground-based 
Fourier Transform InfraRed (FTIR) isoprene column measurements (taken within ±2 hr of the CrIS overpass 
time) at Porto Velho (8.77°S, 63.87°W), on the border between the Brazilian states of Rondônia and Amazonas.

The ground-based instrument is a Bruker 125M high-resolution (up to 0.006  cm −1) spectrometer previously 
deployed at Saint-Denis, Réunion Island (Vigouroux et al., 2009, 2012). Since 2016, the instrument has been 
used at Porto Velho for satellite validation of formaldehyde, methane, and carbon monoxide (Sha et al., 2021; 
Vigouroux et al., 2020). Measurements in the spectral range needed for isoprene detection started in June 2019 
and ended October 2019.

These measurements represent the first retrievals of isoprene from ground-based FTIR spectra. Information on 
retrieval settings is provided in Table 1 and we refer to Vigouroux et al.  (2012) for further details. Retrievals 
employ the SFIT4 algorithm commonly used in the InfraRed Working Group of the Network for the Detection of 
Atmospheric Composition Change (NDACC). The spectral range is extended from that used for the CrIS retriev-
als (to 917 cm −1, Table 1) to encompass the CCl2F2 feature maximum. Figure S7 in Supporting Information S1 
shows an example of the retrieved spectral signatures. As Porto Velho is located in a humid tropical environment, 
the H2O lines are very strong (Figure S7b in Supporting Information S1) and we therefore apply a de-weighting 
(Signal-to-Noise Ratio of 0 instead of 200) to some of these lines that are not well-fitted (see residuals in Figure 
S7c in Supporting Information S1).

FTIR uncertainties are calculated as explained in Vigouroux et al. (2009) and are divided into random and system-
atic components that include measurement noise, model parameters (spectroscopy, temperature, instrumental 
lineshape, interfering species, solar zenith angle, etc), and smoothing error. The total theoretical (OE) random 
uncertainty has a median of approximately 2.8 × 10 14 molec cm −2 (Figure S8 in Supporting Information S1), 
4.5% of the Porto Velho column mean, and is due primarily to temperature effects (∼4%; Vigouroux et al., 2018) 
and measurement noise (∼2.5%). The total theoretical systematic uncertainty has a median of approximately 
24%, dominated by spectroscopic (∼22%) and temperature (∼4%) components. The mean difference between 
subsequent FTIR measurements can be used as an upper limit to empirically verify the above random uncertainty 
estimate; this yields 3.1 × 10 14 molec cm −2, in close agreement with the theoretical value. Empirical verification 

Figure 3.  Potential impact of monoterpenes on the Cross-track Infrared Sounder isoprene retrievals. Shown is the estimated 
monoterpenes: isoprene optical depth (OD) ratio as a function of isoprene column. Optical depths are derived from GEOS-
Chem model predictions as described in-text.
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of systematic uncertainties is more difficult and will require further independent data beyond the CrIS isoprene 
observations presented here.

Figure 4a shows that the monthly mean ground-based retrievals derived as above agree well with the CrIS obser-
vations, with both datasets exhibiting consistent seasonal increases between June and September. We also see 
significant CrIS-FTIR correlation on a daily timescale (r = 0.47), showing that both datasets are capturing short-
term ambient fluctuations. The daily isoprene columns from CrIS are somewhat higher than the ground-based 
results (mean bias: 8%; slope: 1.5 [95% confidence interval: 1.1–2.0]; Figure 4b), whereas they were somewhat 
lower than the previously published OE and ΔTb retrievals shown in Section 3.1. The FTIR spectral range covers 
the same two isoprene signatures used in the CrIS retrievals, and the employed pseudo-line list is likewise based 
on the Brauer et al. (2014) cross-sections used for CrIS. As a result, there should be no significant CrIS:FTIR 
bias associated with isoprene spectroscopy, and the slope disparity in Figure 4 must reflect other factors. The 
mean absolute difference (MAD) (calculated as 𝐴𝐴

1

𝑁𝑁

∑𝑁𝑁

𝑖𝑖=1
|ROCR𝑖𝑖 − FTIR𝑖𝑖| ) between the CrIS and FTIR isoprene 

columns is 34%, reflecting random uncertainties in both data sets.

The Porto Velho measurements are slated to resume in the future, and with time should provide an increasingly 
robust resource for quantitatively testing the space-based retrievals. In theory, such measurements can also be 
performed across the global network of ground-based solar FTIR stations (Vigouroux et al., 2020). However, this 
site in Amazonia is uniquely situated for the validation of isoprene, which is detectable primarily over hotspot 
regions (Wells et al., 2020).

4.  Global Distribution and Key Hotspot Results
Figure 5 shows the global distribution of monthly mean ROCR isoprene retrievals as a multi-year mean over the 
2012–2020 SNPP CrIS record. These data represent the first space-based quantification showing the full seasonal 
cycle of atmospheric isoprene. We see the highest columns over Amazonia, with a widespread regional maximum 
in September and a secondary more localized maximum over northwestern Brazil peaking in April. Within the 
northern midlatitudes, the highest isoprene columns occur during summer over the Ozarks region of the US, with 
other summertime enhancements detected over the forests of Canada and Russia.

Retrieval code SFIT4v09.4.4; available at https://www2.acom.ucar.edu/irwg/

Spectral window 891.6–917.0 cm −1

De-weighted signatures (H2O) 896.4–896.6; 897.6–897.8; 902-8-903.2; 906.5–907.0; 907.7–908.9; 910.1–910.4; 910.6–910.8; 911.2–911.3; 
914.5–915.0 cm −1

Retrieved species (target + interfering) Profile retrieval: C5H8, H2O, NH3

Scaling of the a priori profile: CO2, HNO3, H2 18O, C2H4, CCl2F2, F142b, solar CO

Spectroscopic parameters C5H8: pseudo line list by G. Toon (JPL): https://mark4sun.jpl.nasa.gov/pseudo.html, constructed from the cross-
sections of Brauer et al. (2014).

H2O, H2 18O: from the Toth (2003) data set, available at http://mark4sun.jpl.nasa.gov/data/spec/H2O/RAToth_H2O.tar

NH3, HNO3, C2H4: HITRAN 2012

CO2: HITRAN 2008

CCl2F2, F142b: pseudo line list by G. Toon (JPL)

Solar CO: updated from Hase et al. (2010), see SFIT4v09.4.4 package.

A priori profiles of atmospheric species H2O, H2 18O: 6-hourly profiles from NCEP

Other species: climatology from WACCM v4 model

P, T profiles 6-hourly profiles from NCEP

Regularization Tikhonov L1 regularization (Tikhonov, 1963; see also Vigouroux et al., 2012 for application to FTIR); α-value = 50, 
5, and 0.1 for C5H8, H2O and NH3, respectively.

Uncertainties Random: 4.5% (2.8 × 10 14 molec/cm 2); Systematic: 24%

Table 1 
Settings for the Ground-Based FTIR Isoprene Retrievals at Porto Velho
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Over Africa, CrIS reveals a distinct north-south seasonal shift, with isoprene 
enhancements in the southwest (Angola/Zambia) peaking in January–Febru-
ary, throughout the Sahel during May–October, and in central Africa during 
March–April and September–October. A similar seasonal pattern manifests 
over Oceania and East Asia: during February–April the highest columns 
occur over northern Australia, with this peak then shifting northward to 
Southeast Asia, eastern China, and the eastern Indian subcontinent by July–
September. Detection for many of the above patterns is made feasible by the 
improved sensitivity of the HRI retrieval: over East Asia, for example, the 
short isoprene lifetimes and lower column amounts hindered detection with 
the previous ΔTb approach (Wells et al., 2020).

Below, we explore these results in more detail over two key isoprene 
source regions—the United States+Mexico and Amazonia—demonstrating 
in particular the capabilities of this new data set for resolving patterns of 
isoprene variability at high spatial resolution and on daily timescales.

4.1.  United States and Mexico

Figure  6 shows the 2012–2020 ROCR isoprene retrievals over the US 
and Mexico averaged by month for May–October. The data exhibit strong 
spatial heterogeneity at unprecedented resolution, with major hotspots over 
the “isoprene volcano” in the southern Missouri/northern Arkansas Ozarks 
(Wiedinmyer et  al.,  2005) and over the Yucatán Peninsula in Mexico, an 
area with some of the highest predicted emission rates globally (Opacka 
et al., 2021). Substantial isoprene enhancements are also observed over the 
South-Central Plains in eastern Texas and western Louisiana, where an emis-
sion underestimate was previously inferred from satellite-based measure-
ments of formaldehyde (Kaiser et al., 2018). We also see elevated isoprene 
columns over source regions along the Piedmont Plateau in Appalachia, in 
coastal Mexico, in the national forests of southwestern Colorado, in northern 
California, and in the Sierra Nevada foothills.

The fine-scale patterns of isoprene variability seen by CrIS over North Amer-
ica are also supported by independent data. For example, Figure  7 shows 
that aircraft measurements during the SENEX (Warneke et  al.,  2016) and 

SEAC 4RS (Toon et al., 2016) campaigns in the southeast US exhibit spatial structure that agrees well with CrIS, 
with all three datasets identifying the Ozarks as the primary isoprene hotspot in this region. Over this hotspot, 
the CrIS measurements are further able to resolve daily isoprene variability correlating strongly with surface 
temperature during summer (Figure 8), reflecting the underlying emission dependence (Guenther et al., 1993). 
This strong temporal variability is likewise corroborated by aircraft observations: for example, Figure S9 in 
Supporting Information S1 shows that day-to-day differences of comparable magnitude are detected over this 
region from both space-based and airborne platforms.

Quantifying the isoprene-temperature relationship on a daily basis represents an advance over our previous 
retrievals, which required monthly averaging to enhance signal-to-noise (Wells et al., 2020). We see in Figure 8j 
that the isoprene-temperature dependence seen from space by CrIS is broadly consistent with bottom-up predic-
tions, though with the CrIS data exhibiting a slightly weaker temperature dependence. The observed and modeled 
relationships are both strongly affected by the high columns seen during 2012, the warmest year of the record. 
As 2012 was also a drought year in the Ozarks (Seco et al., 2015), the differing temperature dependencies may 
partly reflect stress-related emission inhibition (Potosnak et al., 2014) relative to the GEOS-Chem predictions 
(which do not include a soil moisture influence). An absolute offset between CrIS and GEOS-Chem is consistent 
with the isoprene lifetime underestimate inferred previously for GEOS-Chem over this region (Wells et al., 2020). 
Uncertainties in basal emission rates and in the satellite data could also contribute; future work is needed to 
quantify these effects.

Figure 4.  Comparison of Cross-track Infrared Sounder (CrIS) Retrieval of 
Organics from CrIS Radiances and ground-based Fourier Transform InfraRed 
(FTIR) isoprene retrievals at Porto Velho, Brazil for June–September 2019. 
(a) Monthly mean (± standard deviation) isoprene columns based on the CrIS 
(black, sampled over the 0.5° × 0.625° pixel encompassing Porto Velho) and 
ground-based (red; ±2 hr of the CrIS overpass) retrievals. (b) Daily mean 
CrIS versus ground-based (±2 hr of the CrIS overpass) isoprene columns; the 
reduced major axis regression and bootstrapped 95% confidence interval are 
indicated by the red line and gray shaded area, respectively. The dotted line 
shows the 1:1 relationship. MAD: mean absolute difference, MB: mean bias.
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Figure 5.  Global distribution of gridded (0.5° × 0.625°) isoprene column densities as measured from the Suomi-NPP Cross-
track Infrared Sounder, averaged from 2012 to 2020 for each month of the year (2013–2020 for January). Missing data (e.g., 
in the wintertime high northern latitudes) appear in gray.
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4.2.  Amazonia

Figure 9 shows CrIS isoprene columns over Amazonia averaged across the SNPP record for January, March, May, 
July, September, and November. Significant spatial variability is revealed by the high-resolution CrIS isoprene 
data over this region. The highest columns are observed over the western Brazilian state of Acre (on the border 
with Peru and Bolivia), followed by a widespread enhancement over the northern Amazon Basin (Brazilian states 
of Amazonas, Pará, and Roraima) and a more localized hotspot over Maranhão in eastern Brazil. Persistently low 
isoprene columns are detected along the Amazon mainstem and over other major regional floodplains (Figure 
S10 in Supporting Information S1; Hamilton et al., 2002), consistent with the elevational and phenological gradi-
ents in isoprene emissions discussed by Gu et al. (2017).

Strong seasonal shifts are seen in the location and magnitude of the above isoprene enhancements. In particular, 
a widespread maximum is detected during the dry season (particularly in September) when temperatures and leaf 
area are highest (Wei et al., 2018). A more localized maximum then emerges over the northwest Amazon basin 

Figure 6.  Distribution of gridded (0.5° × 0.625°) isoprene column densities over the US and Mexico as measured from the Suomi-NPP Cross-track Infrared Sounder 
(CrIS), averaged from 2012 to 2020 by month for May–October.
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during the wet season (approximately November–May), with a minimum during the transition between these two 
periods (June–July) when leaf flushing is believed to cause a large-scale shutdown of isoprene emissions (Barkley 
et al., 2009).

As was the case over the southeastern US, we also observe significant day-to-day isoprene variability over 
Amazonia. Figure 10a shows an example isoprene timeline for year-2013 over the state of Acre in western Brazil, 
where the highest columns in the entire basin are often detected. Isoprene enhancements of similar magnitude 
occur during both the wet and dry seasons (defined here for this region as November–April and June–September, 
respectively, based on precipitation patterns; Figure S11a in Supporting Information  S1)—despite the much 
higher temperatures, and thus presumably higher emissions, in the dry season (Figure 10c). These dual seasonal 
peaks are detected in all years of the CrIS record (Figure S11b in Supporting Information S1). Further, the daily 
isoprene columns have a robust temperature correlation during the dry season (r = 0.75 for 2013, Figure 10c) but 
not during the wet season (r = 0.17, Figure 10b) when the temperature range is small.

The above patterns arise because of seasonal NOx-driven differences in the isoprene lifetime. Wells et al. (2020) 
showed previously that the isoprene lifetime can be directly estimated from the satellite-measured isoprene:-
formaldehyde column ratio. Applying the same approach here, we see that in the wet season, when NOx is low 
(<5 × 10 14 molec cm −2; Figure 10a), isoprene lifetimes over Acre are far longer (often 10–20+ hr; Figure 10b) 
than they are in the dry season (typically <6 hr; Figure 10c) when increased biomass burning leads to elevated 
NOx (>1  ×  10 15  molec  cm −2; Figure  10a). The suppressed wet-season OH then leads to runaway isoprene 
concentrations in spite of the relatively low temperatures, reflecting the strongly non-linear response of columns 
with respect to emissions when NOx is low (Wells et al., 2020). The long wet-season lifetimes likely also cause 
isoprene carryover from one day to the next, degrading any instantaneous temperature correlation. Some of the 

Figure 7.  Spatial distribution of isoprene over the Southeast US as measured from aircraft (left) and from the Cross-
track Infrared Sounder (CrIS; right) during the SENEX (top; June–July 2013) and SEAC 4RS (bottom; August–September 
2013) campaigns. Aircraft data are displayed as campaign mean (daytime flights only) density weighted boundary layer 
(P > 800 hPa) concentrations (molec cm −3); CrIS data are plotted as column densities (molec cm −2) averaged over the flight 
days of each campaign. Areas in gray have no available data.
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Figure 8.  Daily evolution of summertime (June–September) isoprene over the US Ozarks (35°–39°N, 90°–95°W). (a–i) Cross-track Infrared Sounder (CrIS) isoprene 
(black) and MERRA-2 surface air temperature (Tsfc; orange) time series averaged over the Ozarks region for each year from 2012 to 2020 (j) Daily CrIS (black) and 
GEOS-Chem (red) isoprene columns for the same region and timeframes plotted as a function of surface air temperature. An exponential fit to each data set is shown 
with To = 303 K in each case.
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observed wet-season variability may also reflect noise associated with data loss due to clouds; however, we find 
no correlation between cloud cover and the daily isoprene variability observed from CrIS.

We also find during the dry season that the isoprene column:temperature relationship varies in a coherent way 
with the isoprene lifetime: when lifetimes are longer the temperature dependence is steeper, and vice versa 
(Figure 10c). While biomass burning-derived formaldehyde (HCHO) could modify the isoprene:HCHO ratios 
and potentially their scatter, the coherent chemical regimes seen in Figure 10c as a function of isoprene and 
temperature indicate that this is not a dominant effect. Furthermore, our previous work pointed to other biogenic 
VOCs, rather than fires, as the primary non-isoprene source of variability in the isoprene:HCHO relationship 
over biogenic source regions (Wells et al., 2020). Our future work will quantitatively examine the impact of these 
different factors on the oxidative constraints provided by the ROCR isoprene measurements.

Figure 9.  Distribution of gridded (0.5° × 0.625°) isoprene column densities over Amazonia as measured from SNPP CrIS, 
averaged from 2012 to 2020 by month for January, March, May, July, September, and November.
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5.  Conclusions
We have described the next-generation ROCR isoprene retrieval, and applied it to obtain daily global isoprene 
distributions from the CrIS satellite sensor for 2012–2020. The retrieval employs the HRI as isoprene spectral 
index in a machine learning framework, building on previous work for other VOCs with the IASI sensor (Franco 
et al., 2018, 2019, 2020). We show that the ROCR isoprene retrieval provides enhanced sensitivity over our previ-
ous method while maintaining computational efficiency to fully exploit the dense global sampling of the CrIS 
instruments. Over Amazonia, the spatial distribution of the new isoprene retrievals is highly consistent with prior 
OE and ΔTb-based results, with daily variability that compares well with ground-based column observations. The 
derived CrIS isoprene columns are lower in magnitude (20%–40%) than earlier retrieval versions but higher than 
the ground-based results, likely reflecting different sources of systematic uncertainty in the various approaches. 
A series of sensitivity tests identifies the background definition and isoprene vertical profile as the most relevant 
uncertainty sources in the ROCR retrieval. Independent validation continues to be a critical need for robust inter-
pretation of the isoprene column abundances in terms of controlling process.

The long-term global CrIS data set presented here has unprecedented resolution, revealing strong seasonal and 
spatial variability in atmospheric isoprene. Clear seasonal cycles are seen over the world's isoprene hotspots, 
including East Asia and India where sensitivity was limited with our previous approach. Over the US and Mexico, 

Figure 10.  Seasonal variability in atmospheric isoprene over the state of Acre (6°–12°S, 66°–73°W) in western Brazil as 
seen from the Cross-track Infrared Sounder (CrIS). (a) Temporal evolution of CrIS isoprene (black), tropospheric nitrogen 
dioxide (NO2×10, green) from the Ozone Monitoring Instrument (OMI; Boersma et al., 2017), OMI formaldehyde (HCHO, 
cyan) (De Smedt et al., 2017), and MERRA-2 surface temperature (orange) averaged over the region during year-2013. 
(b) CrIS isoprene columns plotted as a function of MERRA-2 surface temperature and shaded by lifetime for the local wet 
season (November–April; blue arrows), and (c) dry season (June-September, red arrows). Isoprene lifetimes are derived from 
the isoprene:HCHO column ratios as described by Wells et al. (2020). Exponential fits to the dry season data are shown for 
isoprene lifetimes <3 hr (blue), 3–6 hr (green), and >6 hr (orange). The timelines are displayed as a three-day running mean; 
scatter plots show daily data.
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isoprene enhancements are observed across a range of ecosystems and in particular over the “isoprene volcano” 
in the Ozarks. There, the patterns of variability detected by CrIS are supported by independent data, reflecting 
temperature variability on daily to interannual timescales. Over Amazonia, strong spatial gradients are observed 
that vary temporally according to seasonal phenology and underlying landscape features. Combining the CrIS 
data with space-based formaldehyde and NO2 measurements reveals daily lifetime variations that demonstrate the 
dual controls of emissions and chemistry on the isoprene abundance.

Overall, results presented here demonstrate the ability of these high-resolution CrIS retrievals to resolve daily 
isoprene variability from space, thus enabling new investigations into emission processes across a range of plant 
functional types. Our initial analyses highlighted some of the emergent connections between isoprene abundance 
and daily-to-interannual variations in temperature and NOx. Because the CrIS record is planned to extend through 
at least 2030, the ROCR isoprene retrievals will provide valuable long-term information for diagnosing ecosys-
tem variability and the links between surface-atmosphere exchange, climate, and chemistry in biogenic source 
regions.

Data Availability Statement
The CrIS Level 1B data used in this work are publicly available at https://snpp-sounder.gesdisc.eosdis.nasa.
gov/data/SNPP_Sounder_Level1/SNPPCrISL1BNSR.2/. The ROCR isoprene column data analyzed here are 
available at https://doi.org/10.13020/5n0j-wx73. Employed airborne data is publicly available at http://esrl.noaa.
gov/csd/projects/senex/ (SENEX) and at http://www-air.larc.nasa.gov/missions/seac4rs/index.html (SEAC 4RS). 
GEOSChem model code is available at www.geos-chem.org.
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